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Radical tumor resection is still the most effective treatment method for brain tumors. The problems of intraoperative monitoring are currently solved using positron
emission tomography, magnetic resonance imaging, and histochemical analysis, however, these require using expensive equipment by highly qualified personnel
and are therefore still not widely available. As an alternative, it is possible to use mass spectrometry methods without sample preparation and then the analysis of
mass spectrometry data involving the use of machine learning methods. The spectra that are more rich and diverse in terms of peak number are typical for mass
spectrometry without sample preparation, therefore the use of this method requires specific pre-processing of experimental data. The study was aimed to develop
the methods to determine the optimal parameter values for pre-processing of the data acquired by ambient ionization mass spectrometry. The paper presents two
such methods and provides specific parameter values for the data acquired using the Thermo LTQ XL Orbitrap ETD mass spectrometer.
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PanukanbHoe yaaneHme onyxonu 1o Cux nop ocTaetcs Havbonee atheKTVBHBIM METOLOM NIeHEHNST OHKOMIOMMHECKMX 3a60/1eBaHNIA rONOBHOMO Modra. 3afaqum
VHTPaoMNepaUMoHHOrO MOHUTOPUHIA Ha CErOAHSLUHMIA AeHb PELLIAIOT C MOMOLLIBHO MO3UTPOHHO-3MUCCUOHHOM TOMOrpadunm, MarHUTHO-PE30HaHCHON TOMOrpadun
1 TUCTOXVIMUYECKOrO aHanm3a, OfHaKo OHW TPebyroT MPUMEHEHWS NOPOroCTosLLEro 060PYA0BaHNS BbICOKOKBANMMULMPOBAHHBIM NePCOHANOM, NOSTOMY A0
CUX MOP HE MOJYYNIM LUMPOKOrO PacnpoCcTpaHeHus. B KadecTBe anbTepHaTBbl BO3MOXHO NPYMEHEHNE METOL0B Macc-CneKTpoMeTpun 663 Npo6onoaroToBKM
C NOCNefyHoLYIM aHaIM30M MaCC-CrNEKTPOMETPUYECKMX AaHHBIX METOLAaMM MALLMHHOMO 00y4eHVst. Tak Kak IS MacC-CreKkTpoMeTpun 6e3 npobonoaroToBKu
xapakTepHbl 6bonee boraTble 1 pasHoobpasHble Mo KONMYECTBY MUKOB CMEKTPbI, ee NpUMeHeHne TpebyeT crneuvanbHoN npeasapuTenbHol 06paboTkm
aKcnepvMeHTanbHbIX AaHHbIX. Llenbto nccnemosaHnst 6bino paspaboTaTb MeToAbl ONpPeaenieHnst onTUMasibHbIX 3HAYEHW NapamMeTpoB NpeaBapuTeibHOM
06paboTKN AaHHBIX Macc-CrekTpoMeTpun 6e3 NPobonoAroToBKU. B paboTe nmpeAcTaBneHbl ABa Takvx METOAA, a TakKe NpvBeneHbl KOHKPETHbIE 3HAYEHUs
napamMeTpoB 15 AaHHbIX, MOyYeHHbIX C MOMOLLbO Macc-crniekTpomMeTpa Thermo LTQ XL Orbitrap ETD.
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Ambient ionization mass spectrometry represents one of the
promising methods to improve accuracy and completeness of
the glial tumor resection, since radical tumor removal is currently
the most effective treatment method for brain tumors [1].
However, there is a problem of identifying the tumor margins in
order to ensure resection completeness for relapse prevention
on the one hand and prevention of excessive resection and
development of neuropathological sequelae on the other hand
[2]. The main universal methods to ensure intraoperative control
of the resected tumor margins still include positron emission
tomography—computed tomography (PET-CT), magnetic
resonance imaging (MRI), and histochemical analysis, since
other methods, such as fluorescence staining, can turn out to
be non-specific for certain diagnoses. However, these methods
are time-consuming, and tomography is also expensive due to
the need to equip the specialized surgical units [3].

Ambient ionization mass spectrometry (MS) makes it
possible to quickly acquire the data on the molecular structure
of the sample [4-6]. However, today, the vast majority of
computational tools to deal with mass spectrometry data
involve working with the spectra acquired by tandem MS
coupled with gas/liquid chromatography. These data are
distinguished by the fact that the number of peaks per scan
of such a spectrum is much less than the number per scan
obtained by ambient ionization MS [7, 8]. When using ambient
ionization MS, the sample preparation simplicity and analysis
speed make it possible to acquire far more complex mass
spectra, i.e., large amounts of data within minutes. At the same
time, the analysis of such data requires the use of automated
processing methods and complex analysis algorithms [9-11],
therefore, great attention should be paid to the data quality
control and pre-processing [12].

Mass spectrometry data are the time-ordered sets of scans.
Each scan represents the profile of the ion current intensities
accumulated by the instrument over a certain time that is
ordered on the mass-to-charge ratio (m/z) scale. In the pre-
processing phase, it is necessary to transform this scan into
the set consisting of intensities and m/z values of the detected
peaks. Usually, this is achieved through implementation of such
steps as normalization of intensity values, noise determination
and elimination, peak position determination and alignment
[13-15]. The great diversity of approaches to MS data processing
suggests that the above steps should be implemented with
various parameters depending on the nature of samples used
in the study, mass spectrometer construction, ion acquisition
mode, and the type of further analysis.

The paper describes the method to determine the mass
spectra pre-processing parameters in order to ensure
unification of mass spectrometry data for further automated
analysis on the example of the experimental data obtained by
mass spectrometry without sample preparation when assessing
human brain tumor tissue samples.

METHODS

The study involved mass spectrometry data acquired when
processing brain tissue samples of the individual diagnosed
with glioblastoma and grade IV astrocytoma (according to the
2021 WHO classification [16]) and non-neoplastic samples
obtained during surgical treatment of drug-resistant epilepsy.
A total of 307 tissue samples obtained from 74 patients were
assessed. The data were acquired using the Thermo LTQ XL
Orbitrap ETD mass spectrometer (Thermo Fisher Scientific;
USA) with an inline cartridge extraction [3, 17]. Each sample
was separated into two parts. The first part was sent for

standard histochemical analysis to obtain a medical record
on the sample, while the remaining part was used to extract
three fragments, about 1 mm? each, to be subjected to
mass spectrometry analysis. The mass spectrometry protocol
involved the analysis and detection of ions in eight different
modes, each of which was characterized by the ions’ polarity,
detector resolution and bandwidth of the registered ions’ m/z.
lon acquisition was performed twice in each mode.

The experimental data acquired were pre-processed using
different values of the parameters described in the Results
section. The pre-processing procedure involved peak intensity
calibration, peak alignment relative to the scan showing
maximum total ion current (TIC), reciprocal alignment of peaks
among scans performed in the same mode of ion detection
and filtration of rare and low-intensity peaks. Distinct scan sets
were obtained for each ion detection mode. Each set of scans
was transformed into the matrix of peak intensities used to train
a classification model. When training the models, the matrix
columns containing distributions of peak intensities across all
scans of the appropriate mode were used as predictors, while
the patients’ histological diagnoses were used as response.
The mass spectrometry data acquired for brain tissue samples
of 33 patients diagnosed with glioblastoma and seven patients
diagnosed with non-neoplastic disorders were used to train
and validate the models. The dataset available for each mode
was divided into the training and validating groups in a ratio
of 3 : 1, respectively; division was implemented in such a way
that different scans of the same sample were present in both
groups, to reduce model overfitting.

The data were analyzed using the computer running Ubuntu
16.04 with the installed R package v. 3.4.4 and R packages
MALDIquant [18], caret [19], glmnet [20], ggplot2 [21]. For that
the data received from the mass spectrometer were converted
from the source Thermo Finnigan format to the open NetCDF
format [22] using the in-lab developed software tool [23].

RESULTS

In 2012, it was shown that the differences between mass
spectra of tumors and non-neoplastic brain tissues could be
used for construction of the classifiers for automatic recognition
of cancerous tissues in biopsy samples [24]. Fig. 1 demonstrates
peaks of two mass scans of the tissue samples obtained from
the patients diagnosed with glioblastoma and non-neoplastic
disorders.

The mass spectrometry data pre-processing procedure
consists of several phases. In the first phase, noise is assessed
and the signal-to-noise ratios are determined for all scans:

/

SNR = /S )

n

where /_is signal intensity, /. is noise intensity. There are several
methods to determine the digital data noise intensity, for
example, using mean absolute deviation (MAD) or regression
with adaptive bandwidths (Super Smoother) [25]. In the
subsequent phases, the low-intensity peaks with the signal-to-
noise ratios lower than the specified SNR value are excluded
from the spectrum. Positions of maxima within the scan may
vary slightly under exposure to variable environmental factors
and occasional fluctuation. In the next phase, alignment of
profiles in different scans is performed to compensate for
such changes. The scan showing maximum TIC is used as
a reference one, since it is assumed that this scan has the
largest number of reported ions, and its profile comprises
the largest number of various ion peaks. Here every profile is
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Fig. 1. Comparison of peaks in mass scans of neoplastic tumors and non-neoplastic specimens samples

subjected to alignment along the m/z axis to become as similar to
the reference profile as possible. The maximum permissible value
of such alignment is specified using the alignment tolerance (TA).
Then peaks are detected: the scan profile is converted into the set
of individual peaks. For that the entire profile is divided into several
parts. The size of each part is determined by the half window size
(HWS) representing the range of m/z points, within which the search
for a point with the maximum intensity value is carried out. This point
is designated as a peak in this part of the profile. Then positions
of identical peaks are aligned across the entire set of scans. Here,
peaks, the differences in m/z between which do not exceed the
tolerance specified when detecting peaks (TBP), are considered to
be identical. In the final phase, rare peaks are removed, and peaks
of all scans are combined into the common matrix of intensities.

Thus, as a result of mass spectrometry data pre-processing,
the matrix is produced [26], the number of rows in which
is determined by the number of scans obtained during the
experiment, while the number of rows represents the combined
number of peaks from all scans. It is clear that the above
parameters (SNR, TA, HWS, and TBP) have a significant impact
on the number of peaks in the matrix of intensities and the
question, which values these parameters should take in each
particular ion acquisition mode, is not trivial.

In the classic tasks to determine the model that best
describes experimental data [27, 28], the information criteria
[29] are used and the extreme values of this criteria correspond to
optimal values of the set of model construction criteria obtained
with the regularization method. In our study, the minimum
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value of the classic Akaike information criterion (AIC) [30] was
used to determine the optimal SNR value. Optimality of other
parameters (HWS, TA and TBP) was determined based on the
manual evaluation of spectra processing quality.

SNR parameter

The optimal SNR value was determined using the Akaike
criterion of the LASSO classification models. For that we made
a combination of SNR, TA and TBP values, pre-processed the
mass spectra, constructed the matrix of intensities, and then
trained the LASSO model using the matrix and the patient’s
diagnosis as the training data. Training of models involved
5/10-fold cross-validation, and the best model was selected
based on the Accuracy metric. The parameter combinations
were made of value sets:

SNR:={1.5, 2}
TA = TBP:= {20, 200, 2000}

The combination of parameters, with which the resulting model
had the lowest AIC value, was named optimal. The optimal
parameter values are provided in Table 1.

To prevent the emergence of negative noise intensities in the
scan, 100 nulls were added to the set of points (M/Z, Intensity)
on the left and on the right. As a result, the noise signal was
evaluated in the broader range of M/Z values with a constant
number of significant peaks in the spectrum.
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Table 1. Optimal SNR values, which correspond to the LASSO models with minimal AIC values

Scanning mode SNR TA = TBP, ppm
Negative, High, 120-2000 20
Negative, High, 500-1000 2000
Negative, Low, 120-2000 20
Negative, Low, 500-1000 2000
Positive, High, 120-2000 2000
Positive, High, 500-1000 2000
Positive, Low, 120-2000 20
Positive, Low, 500-1000 2000

HWS, TA, TBP parameters

Optimality of the HWS, TA and TBP parameters was
determined by manual evaluation of spectra processing quality.
The interactive Shiny application Mass-Spectrum Observer
allowing one to explore, how the spectrum shape, peak
positions and characteristics of the intensity matrix of certain
mass scan change with changing values of these parameters,
was developed for this purpose. The application source code
is available from GitHub repository [31], and the application
demo version is available from the open access library of
Shiny applications [32]. The screen-captured images of the
application are provided in Fig. 2 and 3.

The lists of possible HWS, TA and TBP values were
determined, and the mass spectrometry data pre-processing
procedures were applied to each combination of these values
in order to obtain separate matrices of intensities for each ion
acquisition mode. The TBP parameter was proportional to the
TA parameter with three possible proportionality coefficient
values. The lists of parameter values are provided in Table 2.

The number of columns corresponding to the total
number of peaks obtained from the mass scan profiles was

X Resulted spectra
Input spectra file
Select spectra file from ScalpelDB inSize 9, TAlgr: 26.08 TolBinPeaks:

1557/19, 53, Diag_id 3, Orbitrap_MIPT, 19_03_11, 54.cdf v 003

.. or select file from local folder 0025

Browse.

Select experiment protocol

Defined by spectra file v oot

Processing parameters a0
fon acquisition mode

Neg.LowRes.100-2000 J]
MS scan number

2
MS scan position to the left

10
MS scan position to the right

10

Wz range:
5 @ @ 2
Signalivoise raio

2

halfwindowsize

.

Mass peak tolerance align

0.0002

Mass peak tolerance binPeaks

0,0002

Spectra file: 1557/19, s3. Diag_id 3, Orbitrap_MIPT, 19_03_11, 54.cdf
Haitwi 20.04, SNR: 2

determined for each matrix of intensities. Furthermore, when
constructing the intensity matrix, we determined the number of
peaks located close to each other in the resulting spectra. When
the distance between peaks was smaller than two instrument
resolutions during detection of ions in this mode, the peaks were
considered as probably duplicate. Such peaks can emerge during
conversion of the scan profiles into the sets of individual peaks,
for example, within the same scan at too low HWS values, with
the result that the intensity spike that is relatively broad on the m/z
scale is represented by several spectral peaks, or in the scans of
the same file at low TBP values, due to which the algorithm
cannot compile the list of identical peaks from different scans.
The duplicate peaks were determined within the same scan, in
all scans of the same tissue specimen sample used for mass
spectrometry analysis, and among all peaks of the intensity matrix.
Peak duplication was defined based on the mass spectrometer
resolution in this ion acquisition mode; the value of 800 at
m/z = 400 was selected for the low-resolution mode, the value of
30,000 at m/z = 400 was selected for the high-resolution mode.

The reference HWS, TA and TBP values that were later
subjected to manual evaluation performed using Mass-
Spectrum Observer were determined based on the changes

Raw scan# 14, 24, 34, retention time: 9.946, 17316, 25.24, points count 2473

| Peaks scan 14, 24, 34, retention time: 9.946, 17.316, 25,24, peaks counts 62

Aligned spectra scan# 14, 24, 34, retention time: 9,946, 17.316, 25.24, points counts 2473

Fig. 2. Screen-captured image of the Mass-Spectrum Observer application window with the spectrum pre-processing parameter control panel

Table 2. Possible HWS, TA, and TBP values

Parameter Values for high resolution Values for low resolution
HWS 3,57} {7,9,11,13,15,17,19}
TA, ppm {1, 20.8, 40.6, 60.4, 80.2, 100, 208, 406, 604, 802, 1-10%} {100, 325, 550, 775, 1-10%
TBP =m-TA m:={0.1,1, 10}
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Fig. 3. Screen-captured of the Mass-Spectrum Observer application window with the plots corresponding to the spectra yielded after applying the pre-processing

procedure

in these four indicators in accordance with the processing
parameters. The manual evaluation results are provided in Table 3.

DISCUSSION

The findings show a close relationship between the ambient
jonization mass spectrometry data pre-processing parameters
and the quality of acquired spectra. The SNR parameter makes it
possible to reduce the number of peaks in the resulting spectrum.
However, attention should be paid to the presence of the negative
estimate of noise signal values that may occur in the border
spectral regions as an artifact. When detecting peaks in the profile,
the noise estimate is used to determine peak intensity in this region
of the profile, so negative noise can result in the emergence of the
excessive number of peaks in the spectrum. This may not matter
much in case of ion detection in the broad M/Z range (for example,
120-2000), but may be significant for the narrow range of 500-1000.
In some cases, it is possible to eliminate such artifacts by fine-
tuning the Super Smoother method (for example, by changing
the smoothness degree during approximation or by narrowing the
profile region, for which noise estimation is performed). However,
these methods can yield different results for each particular mass
scan, therefore the method of false dataset expansion was selected
as a more sustainable method to eliminate negative values.

The HWS, TA and TBP values should be selected based
primarily on the instrument resolution. The increase in half window
size during the profile conversion into the intensity matrix enables

Table 3. Optimal HWS, TA and TBP values acquired by manual evaluation

elimination of artifact and duplicate peaks on the one hand (Fig. 4),
but on the other hand the too high values of this parameter lead
to exclusion of significant peaks from the subsequent analysis
(Fig. 5). The values of peak position tolerance at alignment and
detection are also closely related to the half window size and,
therefore, to resolution, as well as to other mass spectrometer
features resulting from the mass drift and the signal digitization
methods. Furthermore, the TBP value should not be less than
the TA value, since such configuration of values always results in
the increase in the average number of possible duplicate peaks.
This is due to the fact that the algorithm does not have enough
tolerance for shift of identical peaks in different scans to eliminate
duplicate peaks even after alignment of all scans relative to the
scan with the highest ion current. It should be also noted that
changing the width of the range without changing resolution
and polarity of the detected ions has no significant effect on the
parameter values, which is considered the expected result.

CONCLUSIONS

We developed a universal approach to determining the optimal
parameter values for pre-processing of the data acquired
by ambient ionization MS. The use of this approach was
demonstrated on the data acquired by assessing human
brain tissue samples using the Thermo LTQ XL Orbitrap ETD
mass spectrometer. The approach developed can be used to
determine the optimal parameter values for pre-processing

lon asquisition mode TA, ppm TBP, ppm HWS

Negative, High, 120-2000 40.6 40.6 3
Negative, High, 500-1000 60.4 60.4 3
Negative, Low, 120-2000 775 7.75x 103 13
Negative, Low, 500-1000 1x10° 1x10° 13
Positive, High, 120-2000 60.4 60.4

Positive, High, 500-1000 60.4 60.4 3
Positive, Low, 120-2000 1x10° 1 x 10 13
Positive, Low, 500-1000 1x10° 1 x 104 13
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Fig. 4. Determining peak positions. The emergence of peaks, the distance between
which in the wide-range low-resolution mass scan of negative ions obtained
at suboptimal processing parameter values is less than two resolutions of the
instrument in this ion detection mode (duplicate peaks)

of the data acquired when assessing samples of other types
using other mass spectrometry equipment. The findings show
that it is necessary to thoroughly adjust the mass spectrometry
data processing parameters when using ambient ionization MS
in the clinics as the faster and more affordable alternative to
conventional intraoperative monitoring methods. Parameters
have to be determined considering the mass spectrometer
and research conditions. In particular, the SNR parameter
determining the number of peaks in the resulting spectra
should be selected based on the assessed tissue type and
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