ORIGINAL RESEARCH

Tryptophan catabolites and predicted gut flora enzyme-encoding genes

About authors

1 Pirogov Russian National Research Medical University, Moscow, Russia

2 Peoples' Friendship University of Russia, Moscow, Russia

3 Center for Digital and Translational Biomedicine, Center for Molecular Health, Moscow, Russia

4 Kazan (Volga Region) Federal University, Kazan, Russia

5 Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

6 Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia

7 National Medical Research Center of Endocrinology, Moscow, Russia

Correspondence should be addressed: Olga P. Shatova
Ostrovityanova, 1, Moscow, 117997, Russia; moc.liamg@po.avotahs

About paper

Funding: the study was performed as part of the Assignment № 0373100122119000041 for the project “Creation of a bank of blood serum and fecal samples from healthy donors and patients with obesity, metabolic syndrome, type 2 diabetes mellitus, impaired mucosal barrier of the gastrointestinal tract with the aim of identifying candidate species-specific mediators of the quorum sensing human microbiota systems modulating the endocrine and metabolic function of adipose tissue”.

Author contribution: Shatova OP — primary data acquisition, statistical processing, manuscript writing and preparation of figures; Gaponov AM — manuscript writing; Grigoryeva TV — microbiome assessment; Vasiliev IYu — microbiome assessment and statistical data processing; Stoletova LS — data analysis; Makarov VV, Yudin SM — writing parts of the manuscript; Roumiantsev SA — study concept, manuscript editing; Shestopalov AV — study concept, data analysis, manuscript writing and editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Pirogov Russian National Research Medical University (protocol No. 186 of 26 June 2019). All patients submitted the informed consent to the use of biomaterial for scientific purposes.

Received: 2023-06-21 Accepted: 2023-07-20 Published online: 2023-08-07
|
  1. Bharti К, Grimm DJ. Current challenges and best-practice protocols for microbiome analysis Briefings. in Bioinformatics. 2021; 22 (1): 178–93. PubMed PMID: 31848574.
  2. Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol. 2019; 13 (1): 3–15. PubMed PMID: 30791839.
  3. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019; 4 (2): 293– 305. PubMed PMID: 30531976.
  4. Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017; 13 (2): 17004. PubMed PMID: 28741610.
  5. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai MM, Nomura E, et al. Toll-like receptor 7 agonist-induced dermatitis causes severe dextran sulfate sodium colitis by altering the gut microbiome and immune cells. Cell Mol Gastroenterol Hepatol. 2018; 25 (7): 135– 56. PubMed PMID: 30510995.
  6. Desai SN, Landay AL. HIV and aging: role of the microbiome. Curr Opin HIV AIDS. 2018; 13 (1): 22–27. PubMed PMID: 29035948.
  7. Burcelin R. HIV and aging: role of the microbiome. Biol Aujourdhui. 2017; 211 (1): 1-18. PubMed PMID: 28682223. French.
  8. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018; 9 (1): 3294. PubMed PMID: 30120222.
  9. Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2020; 117 (32): 19376–87. PubMed PMID: 32719140.
  10. Wong CB, Tanaka A, Kuhara T, Xiao JZ. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Microorganisms. 2020; 8 (3): 398. PubMed PMID: 32178456.
  11. Aust AC, Benesova E, Vidova V, Coufalikova K, Smetanova S, Borek I, et al. Profiling tryptophan catabolites of human gut microbiota and acute-phase protein levels in neonatal dried blood specimens. Front Microbiol. 2021; 12: 665743. PubMed PMID: 34777268.
  12. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474: 1823–36. PubMed PMID: 34777268.
  13. Vyhlídalová B, Krasulová K, Pečinková P, Vyhlídalová B, Krasulová K, Pečinková P, et al. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: a detailed characterization. Int J Mol Sci. 2020; 21 (7): 2614. PubMed PMID: 32283770.
  14. Yoval-Sánchez B, Pardo JP, Rodríguez-Zavala JS. New insights into the half-of-the-sites reactivity of human aldehyde dehydrogenase 1A1. Proteins. 2013; 81 (8): 1330–9. DOI: 10.1002/prot.24274.
  15. Qu Y, Dai C, Zhang X, Ma Q. A new interspecies and interkingdom signaling molecule-Indole. Sheng Wu Gong Cheng Xue Bao. 2019; 35 (11): 2177–88. PubMed PMID: 31814363. Chinese.
  16. Ji Y, Gao Y, Chen H, Yin Y, Zhang W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients. 2019; 11 (9): 2062. PubMed PMID: 31484323.
  17. Available from: https://www.genome.jp/pathway/map00380+C00954
  18. Shestopalov AV, Shatova OP, Karbyshev MS, Gaponov AM, Moskaleva NE, Appolonova SA, et al. «Kynurenine switch» and obesity. Bulletin of Siberian Medicine. 2021; 20: 103–11. DOI: 10.20538/1682-0363-2021-4-103-111].
  19. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016; 7: 455. PubMed PMID: 27065999.
  20. Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr. 2019; 6: 24. PubMed PMID: 30923709.
  21. Silveira EA, da Silva Filho RR, Spexoto MC, Haghighatdoost F, Sarrafzadegan N, de Oliveira C. The role of sarcopenic obesity in cancer and cardiovascular disease: a synthesis of the evidence on pathophysiological aspects and clinical implications. Int J Mol Sci. 2012; 22 (9): 4339. PubMed PMID: 33919368.
  22. Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, et al. Dietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine. 2015; 2 (8): 968–84. PubMed PMID: 26425705.
  23. Available from: http://qiime.org/
  24. Available from: https://picrust.github.io/picrust/
  25. Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev. 2016; 30 (14): 1589–97. PubMed PMID: 27474437.
  26. Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011; 6 (8): e23652. PubMed PMID: 21858192.
  27. Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F, Praz V, et al. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev. 2015; 29 (9): 934–47. PubMed PMID: 25934505.
  28. Ishii I, Ikeguchi Y, Mano H, Wada M, Pegg AE, Shirahata A. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids. 2012; 42 (2-3): 619–26. PubMed PMID: 21809076.
  29. Sadasivan SK, Vasamsetti B, Singh J, Marikunte VV, Oommen AM, Jagannath MR, et al. Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice. Eur J Pharmacol. 2014; 729: 94–99. PubMed PMID: 24530553.
  30. Pedersen SB, Hougaard DM, Richelsen B. Polyamines in rat adipocytes: their localization and their effects on the insulin receptor binding. Mol Cell Endocrinol. 1989; 62 (2): 1661–6. PubMed PMID: 2663568.
  31. Sharma M, Abayakoon P, Epa R, Jin Y, Lingford JP, Shimada T, et al. Molecular basis of sulfosugar selectivity in sulfoglycolysis. ACS Cent Sci. 2021; 7 (3): 476–87. PubMed PMID: 33791429.
  32. Frommeyer B, Fiedler AW, Oehler SR, Hanson B, Loy A, Franchini P, et al. Environmental and intestinal phylum firmicutes bacteria metabolize the plant sugar sulfoquinovose via a 6-deoxy-6sulfofructose transaldolase pathway. iScience. 2020; 23 (9): 101510. PubMed PMID: 32919372.
  33. Haange SB, Groeger N, Froment J. Multiplexed quantitative assessment of the fate of taurine and sulfoquinovose in the intestinal microbiome. Metabolites. 2020; 10 (11): 430. PubMed PMID: 33114761.
  34. Huang W, Cho KY, Meng D, Walker WA. The impact of indole3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis. Sci Rep. 2021; 11 (1): 8088. PubMed PMID: 33850185.